The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms

نویسندگان

  • David Dean
  • Sridha Sridharan
  • Robbie Vogt
  • Michael Mason
چکیده

The QUT-NOISE-TIMIT corpus consists of 600 hours of noisy speech sequences designed to enable a thorough evaluation of voice activity detection (VAD) algorithms across a wide variety of common background noise scenarios. In order to construct the final mixed-speech database, a collection of over 10 hours of background noise was conducted across 10 unique locations covering 5 common noise scenarios, to create the QUT-NOISE corpus. This background noise corpus was then mixed with speech events chosen from the TIMIT clean speech corpus over a wide variety of noise lengths, signal-to-noise ratios (SNRs) and active speech proportions to form the mixed-speech QUTNOISE-TIMIT corpus. The evaluation of five baseline VAD systems on the QUT-NOISE-TIMIT corpus is conducted to validate the corpus and show that the variety of noise available will allow for better evaluation of VAD systems than existing approaches in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The QUT-NOISE-SRE protocol for the evaluation of noisy speaker recognition

The QUT-NOISE-SRE protocol is designed to mix the large QUT-NOISE database, consisting of over 10 hours of background noise, collected across 10 unique locations covering 5 common noise scenarios, with commonly used speaker recognition datasets such as Switchboard, Mixer and the speaker recognition evaluation (SRE) datasets provided by NIST. By allowing common, clean, speech corpora to be mixed...

متن کامل

A New Algorithm for Voice Activity Detection Based on Wavelet Packets (RESEARCH NOTE)

Speech constitutes much of the communicated information; most other perceived audio signals do not carry nearly as much information. Indeed, much of the non-speech signals maybe classified as ‘noise’ in human communication. The process of separating conversational speech and noise is termed voice activity detection (VAD). This paper describes a new approach to VAD which is based on the Wavelet ...

متن کامل

Noise robust voice activity detection using features extracted from the time-domain autocorrelation function

This paper presents a method of voice activity detection (VAD) for high noise scenarios, using a noise robust voiced speech detection feature. The developed method is based on the fusion of two systems. The first system utilises the maximum peak of the normalised time-domain autocorrelation function (MaxPeak). The second system uses a novel combination of cross-correlation and zero-crossing rat...

متن کامل

A model based voice activity detector for noisy environments

This paper presents a model-based voice activity detector (VAD) aimed at operating in low signal to noise ratio conditions and non-stationary noise environments. The proposed system makes use of Gaussian mixture models trained on Mel Frequency Cepstral Coefficients extracted from noisy speech data. In addition, information from smoothed frame based log energy is used to augment the system to de...

متن کامل

Complete-linkage clustering for voice activity detection in audio and visual speech

We propose a novel technique for conducting robust voice activity detection (VAD) in high-noise recordings. We use Gaussian mixture modeling (GMM) to train two generic models; speech and non-speech. We then score smaller segments of a given (unseen) recording against each of these GMMs to obtain two respective likelihood scores for each segment. These scores are used to compute a dissimilarity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010